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EXCHANGER 

V. P. Kolos and V. N. Sorokin UDC 621.039.517.5 

The variational problem of determining the normalized field of energy release, 
for which the power consumption for pumping the coolant is minimum, is solved for 
a one-dimensional model of the fluid motion. 

The high-potential indicators of heat exchangers of the radial type (the functional 
diagram is shown in Fig. i) are based on the combination of the advantages of the energy 
releasing medium in the form of a layer of monodispersed particSes and the advantages of 
lateral inflow of the coolant [1-4]. Devices of this type can be used in the chemical 
industry and in power and heat engineering [1-8]. Their extensive possible applications 

i and the expected high efficiency make them the most promising apparatus of this type. 

The pptSmization problem was formulated as follows. For fixed parameters To, P0, and 
T L and nominal power from the region of admissable energy release distributions a distri- 
bution such that for self-similar profiles of the mass rate of filtering and energy release 
the power consumption for pumping the coolant is minimum (the dimensions of the channel have 
an upper limit). Thermodynamic similarity is a condition for optimal heat extraction [4]; 
it combines inseparably into one problem the problem of searching for optimal energy re- 
lease and the problem of determining the areas of the distributing and output channels. 

Fig. I. Functional diagram of a heat ex- 
changer of the radial type with a cylindri- 
cal system of coordinates for describing 
thermohydrodynamic processes: i, 2) dis- 
tribution and outflow channels; 3) dis- 
placing rod; 4) surrounding gratings; 5) 
housing (shell); 6) fuel layer. 
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In solving the problem we ignore molecular transfer, radiation transfer, the inertial 
forces of the flow in the layer, heating of the coolant as a result of dissipation, and pres- 
sure losses in the enclosing gratings. We shall model the energy release in the particles of 
the medium by internal heat sources concentrated in the liquid, and we shall assume that it 
is constant over the thickness of the layer (qv = qv( x))" We describe the dependences of the 
coolent density on the thermodynamic parameters by the Boussinesq approximation: 

P . . . . .  I ; c =  2 I~0(p.o+p~L)_ + P 2 L  �9 

Because the refractive index of the dense fill is an exponential function of its resistance 
[9] the flow in the fuel layer will be predominantly transverse. Adding to this the fact 
that the energy release profile need not be calculated with high accuracy, we are fully 
justified in using one-dimensional equations of thermohydrodynamics for an apparatus of the 
radial type: 
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The d e r i v a t i o n  o f  t h e s e  e q u a t i o n s  i s  b a s e d  on t h e  a s s u m p t i o n  o f  a s t r i c t l y  r a d i a l  f l o w  o f  
liquid in the layer [4]. The known quantities are Q, G 0 L, Rz,2, d, P0, To, (A/D)x,2, s, 
B1,2, N-, N +. 

We showed previously that for a quadratic law for the resistance of the channels (~i,2 
is independent of the parameters of the flow) in the apparatus the condition of optimal 
heat extraction is preserved also when the apparatus operates on partial loads. This flow 
regime is realized in channels with artificial roughness of the wetted surfaces [I0]. The 
coefficients ~z,2 and the minimum value of the coolant flow rate for which self-similarity 
of the fluid flow in the apparatus is realized [i0] were determined for tapered distributing 
and expanding output channels: 

f5 'D "~ a22 ~ 1 , 2 = 0 , 1 4 5 ~  / )1:2 ; 

~F Co>  p I lo**- (5 ,x -  o,351  100 

The further calculations will be based on these formulas. 

The optimization problem mathematically reduces to finding the functions qZ(x), Fl, 2(x) 
that minimize the functional 

,, 9~ 9~ , 9 Or 
0 R~ 

w i t h  a n o n h o l o n o m i i c  c o n s t r a i n t  ( t h e  e q u a t i o n s  o f  d y n a m i c  m a t c h i n g  [ l l ] )  

and the restrictions 
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gxE[O; L), B ~ F ~ ( x ) > O ;  vxE(O; L], B 2 ~ F ~ ( x ) > O ;  

C/Go = q d Q. (8 )  

With the help of the relation (8) we transform from~the unkown function q~ to the 
quantity g = G/G 0 and introduce the longitudinal dimensionless coordinate x __dej x/L. From 

Eqs. (1)-(4) we determine the power consumption per unit length for pumping the coolant 
through the layer and the pressure ~rop AP under conditions of thermohydrodynamic similarity 
(8): 
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where 
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Next we represent the integrand in (5) and the terms in Eqs. (6) explicitly in terms of the 
unknowns g, fi,2 = FI,2/BI,2, using for this (i)-(3), (8), and (9). We introduce the 
penalty functions: 

gl,2 + a ) (10) f1,2 (~1,2) = l arctg a 6 ---g- ' 
N - k - - N - [  z .___~___) def 

g' (z) = N- q- arctg ~ § = s (z). (11) 

They enable avoiding restrictions of the type expressed by the inequalities (7). The 
variational problem is thereby greatly simplified, in spite of the increase in the number of 
unknowns and the appearance of an additional nonholonomic constraint (Ii). 

We shall search for g, z, and YI,2 amongst the classical set of admissable functions. 
The linearity of the expressions (5) and (6) as a function of g', z', and Y[,2 shows that 
this set is closed. Here the method of Lagrange multipliers can be used to solve the problem 
without introducing corrections into Euler's @quations [12]. Following this method, we 
construct the auxiliary functional, whose integrand will have the form 
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Carrying out the standard calculations, we obtain the following system of Euler equa- 
tions for the function g, z, fi,2, AI: 

a1(1--g)(l+VI--L) 

fi 

~-~i-§ ) [ 2 a i §  

~ (" I: v, Ira%--3(I --g)l + -%-h ~-~._, ,. _. ~--n + 

g + A , - - . : ; + A 1  ~ . - -  
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( 13 )  

( 14 )  

(15) 

S 
- -  + [(1 - -  g )  -- : \1]  a~M~ = O; (16) 

(N-)' + 
N+ - -  A:- 2' 

a 5 § z2/5 (17) 

Here we employed the notation: 

1 3 ( I E F l - - f ~ ) +  2 V ~  /'~ § 
M , =  f ,  . ' - -  2 V l / n  = b.  

1 { 3 ( t - - g )  a l ( 1 - - g ) z ( l + V ' l - - L )  + 
A = G -  _ 2 f i  s -  I~ 

' l / T  / l 

Oj (I  - -  g)Z o:iZg2 

We e l i m i n a t e  f rom Eqs. ( 1 3 ) - ( 1 7 )  t h e  unknowns h i ,  2 and t h e i r  d e r i v a t i v e s ,  and we p u t  
' = f i ( x ;  Yi;  " " ;  YN), which i s  c o n v e n i e n t  f o r  s o l v i n g  on a the system into the form Yi 

computer. We shall describe crucial aspects of this mathematical operation. We solve the 
equations (15) and (16) algebraically for Ai and Ai'~, as a result of which we obtain 

' Pl '~ 
P2 ] a~,Mfg--  a~M1 (I - -  g) def 

Ai = = o'; 
1 ..... § l--J- 1 s -  a , M , - - a . 2 M ~  

1- -g  g , 

(18) 
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( A ; = - - a l M l ( 1 - - g ) + ~  aiM, =~,. (19) 

Differentiating (19) and substituting for g' and z' their expanded expressions (ii) and (17), 
we determine At": 

A7 = R + Wlf; + W2f~, (20) 

where 

R = a i M 1  ('v -+- s) - -  ~ - -  ~ + ; 
1--g 

W , = a l Y l ( a - - l + g )  ~ 1  ; W2-- ~ 2  ; 
1--g 1--g 

1 [M1  + 1 fl  ] 

Y1-- f l  { -V~~ ]c i 4(l-- tO 3/2 j "  

In an analogous manner we find A=' from Eq. (14): 

A~ = S Jr- E~f; + E2f~ , (21) 

where E = RKsq-AC; EI,2 =I~1,2 KS~-~I.2C; C = vK ~ GKs (the relations (17) and (20) were em- 
ployed to derive (21)). After replacing the Lagrange multiplier and the derivatives by (18), 
(19), and (21) Eq. (13) can be put into the form 

T + e ~ f i . +  e 2 f ~  = o. ( 2 2 )  

Here 

T =  a , (1 - -g ) ( l  + [ 2 a - - 3 ( 1 - - g ) ] +  (--97) 91 tga2g x 

l~ ) ,Ol I 

1 - -  g E2. Ol = a El; 0 2 = a t  9 9,g 

9~ 

Comparing the equalities (18) and (19) we establish a relationship between o and 9: o' = ~; 
according to (17)-(19), it can be represented in an expanded form by the linear (with respect 
to f[,2) equation 

t + re,f; + mgfJ = O, (23) 
where 

t =  ( P! a 2 M : + a l M :  --[3 A 
P~ 
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: F z P9 I~ 
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; 
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I [ M 2 +  1 f~ ] 
Y2 --  f2 T/l /nZ + f~ -t- 4 (l /n z -t- [2) ~/2 " 

Keeping in mind the restriction on the range of variation of the solution of the problem 
(i0), the equality (17), (22), and (23) can be easily put into the form 

( de,) ( lo,_T   
Yl = 9"1 6"-1- ' tO~O 1 _ ( 0 1 0  2 = '~I ; -Yl = ~ 5 - ~ -  , (01@.)__03201 - -  "~2 ; 

z '  
N + - -  AT- 

, ~ ~ ( N + - - N - ) '  ' a r c t g  + . 

(24) 

We shall now formulate the boundary conditions. The property of continuity of the 
coolant implies 

~1~=o = O; g[x=L = 1. ( 2 5 )  

We determine the values of the functions yl(0) and y2(1) by equating to zero the first varia- 
tion of the functional: 

a ~ ;  = 0 ~ V l  (0)  = ~ ==>" f l  (0)  ~--- i ;  

a ~  , x=1 
ay~ = 0 =>-y2 (1) = oo =>-f2(1) = 1; 

(26) 

The remaining natural conditions are satisfied for any values of y2(O), y1(1) (if (25) holds 

___~0, V-=x=0---~0oy2 ) , so that we can assume that they belong to extremals. 0Yl x=l 

The equations (24) and the boundary conditions (26) have singularities at the point 
x = 0 and x = i; the variational problem must be solved on the segment [e; i -- el, after which 
we must pass to the limit ~ § 0, using for this purpose spline interpolation [13]. 

Examining the sufficient conditions for a minimum we note that the extremely YI,2, z, 
and g always satisfy the boundary conditions, and the functional itself is irregular. The 
fact that the quadratic form =' 1/2 r zero precludes the use of the Jacobi and 
Legendre conditions for analyzing the form of the extremum of the functional; new tests are 
required here. We shall determine the condition under which the sign of the second variation 

i 

of [. ~dx is constant. To simplify the notation and for generality of the arguments we 
2 

represent it in the form l 

.f + 
0 

def 
where  W = W ( x ;  y); % = ~ z ( x ;  y); y= (A1 ,2 ,  Yl,2, z, g ) = y = ( y l  . . . . .  YK); l =  1, K. 

Consider a 3K dimensional vector n = (~l ..... ~sK), and let the following relation 
exist between the comonents of N and y: 

~]l=Yt; ~K+Z=Y~" 

We construct the image representation of the auxiliary functional: 

(27)  
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J" ('~ + ~,v;) dx=~ 
0 

~IK+z = Y; 

def 1 

=*'d = .I [ ~ F +  r + 
0 

+ ~1~+~ 01; - -  ~1~:+r dx. 
(28) 

:Expanding (28) in a Taylor series, we find 62J: 

I ( azg r a2rpz 

~J  = i [~/~+z,~ an; &~ + --2- \ an~on---~. + an,on------7- ~f  0~h 6K+~,: + 

+Oq~z 6K+t,~__f2K+Z.~fK+t,i.__62K+t,/6K+~,~/] 6n~&bdx; i, ]----1, 3K. 
O~l; 

(29 )  

In deriving (29) we took into account the fact that 6J = 0; for convenience the indices in 
the Kronecker 6 are separated with a comma. Since the relationship between Ns and NK+% (see 
(27)) exists over the entire set of admissible curves (and not only on the extremals) 
6Ns = 6nK+s the first term in (29) can then be represented as a product of variations of 
functions: 

62K+l'~6~:6~i = 62K+Z'~6K+Z'/8~i6~J" (30 )  

After substituting the expression (30) into (29) and simplifying the result using the 
properties of a skew-symmetrix matrix, we obtain: 

1 

62J = ( ~ u 6 ~ 6 ~ f l  x, 

Where o 

~J= "-2- a%d~j + a%a~: ~; + ~ 6~+z,:. + ~  6K+z,~ , 

i , ] = l ,  2K. 

The derivatives ns correspond to Y[,2, gt, z' , A'z,2~" they are determined from Euler's equa- 

tions based on the scheme described previously (see (ii), (13)-(24)). The existence of uni- 
form convergence makes it possible to determine the form of the extremum with respect to the 
sign of the symmetric quadratic form ~'~: if ~ ~ 0, then a minimum is realized on the 
extremal curves; if ~'~ < 0, then a maximum is realized. 

The closed system of equations (ii) and (24) with the boundary conditions (25) and (26) 
describes the profile, with the suspicious optimum, of energy release and the throughput sec- 
tions of the channels, ensuring thermohydrodynamic similarity in the fuel layer; finally, 
the solution is checked by the test derived. 

In conclusion we present some results of a numerical analysis. The starting data are: 
N-(x) = const < i; N+(x) = const > i; $1,2 ! 0.07; the dimensions of the apparatus satisfy 

thefollowingrestrictions: 0'IL ~2oLV/-~ RI ~l; ~l; K~I (the setups are designed to operate under 

conditions of intense outflow and inflow). The calculations show that for all these construc- 
tions the optimal energy release in the layer is practically uniform (g % i ~ qs % Q/L); the 
channel areas are described by the following functions: 

[1 ~ (1 - -  6al) (1 - -  x) 3/2 + 4al (1 - -  x) + 2al (1 --  x)2; 
( ) x2/~ 

f2 ~ 1 - -  1 . x 3 / 2 + _ _  
1 1 e x p - -  exp - -  

a 2 a ~  
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NatBrally, the energy release q~ = const is not always optimal if N +, N- # const. 

NOTATION 

x, r, cylindrical coordinates; I, p, T, and P, enthalpy, density, temperature, and 
static pressure of the gas; V, flow velocity; G, flow rate of the gas in the channel; RI(R2), 
inner (outer) radius of the fuel layer; qv(qs volume (per unit length) energy release in 
the layer; Q, thermal power of the apparatus; e, d, and L, porosity, diameter of the fuel 
grain, and length of the layer; F, D, ~, A,.channel area, the equivalent hydraulic diameter, 
the coefficient of hydraulic resistance, and the height of the protuberances on the channel 
walls; NL(N+), lower (upper) boundary of the region of admissible distributions of energy 
release; B is the maximum admissable value of the channel area; 6, an arbitrary positive 
quantity, close to zero; At, A2, Lagrange multipliers; 6i, j, Kronecker 6; **, exponentiation; 
def 
= , equality by definition. Indices: i, parameters referring to the distributing channel; 
2, parameters referring to the outflow channel; i, 2, relations valid for both the distribu- 
tion and outflow channels; O, parameters of the coolant at the input; L, parameters at the 
output; a prime ' indicates differentiation with respect to the longitudinal coordinate. 
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